Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Environ Microbiol ; 26(4): e16618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561820

RESUMO

Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of 'hitchhiking' microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%-4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.


Assuntos
Alphaproteobacteria , Burkholderiales , Humanos , Microplásticos , Plásticos , Transporte Biológico
2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474230

RESUMO

Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.


Assuntos
Burkholderiales , Microbioma Gastrointestinal , Humanos , Escherichia coli/metabolismo , Sulfotransferases/metabolismo
3.
Int J Biol Macromol ; 263(Pt 1): 130284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382786

RESUMO

Polyethylene terephthalate (PET) is one of the most produced plastics globally and its accumulation in the environment causes harm to the ecosystem. Polyethylene terephthalate hydrolyse (PETase) is an enzyme that can degrade PET into its monomers. However, free PETase lacks operational stabilities and is not reusable. In this study, development of cross-linked enzyme aggregate (CLEA) of PETase using amylopectin (Amy) as cross-linker was introduced to solve the limitations of free PETase. PETase-Amy-CLEA exhibited activity recovery of 81.9 % at its best immobilization condition. Furthermore, PETase-Amy-CLEA exhibited 1.37-, 2.75-, 2.28- and 1.36-fold higher half-lives than free PETase at 50 °C, 45 °C, 40 °C and 35 °C respectively. Moreover, PETase-Amy-CLEA showed broader pH stability from pH 5 to 10 and could be reused up to 5 cycles. PETase-Amy-CLEA retained >70 % of initial activity after 40 days of storage at 4 °C. In addition, lower Km of PETase-Amy-CLEA indicated better substrate affinity than free enzyme. PETase-Amy-CLEA corroded PET better and products yielded was 66.7 % higher than free PETase after 32 h of treatment. Hence, the enhanced operational stabilities, storage stability, reusability and plastic degradation ability are believed to make PETase-Amy-CLEA a promising biocatalyst in plastic degradation.


Assuntos
Burkholderiales , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Ecossistema , Hidrolases/metabolismo
4.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395309

RESUMO

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Assuntos
Burkholderiales , Hidrolases , Polietilenotereftalatos , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Reciclagem , Cinética , Burkholderiales/enzimologia , Modelos Químicos
5.
J Phycol ; 60(1): 152-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38073162

RESUMO

Superior antagonistic activity against axenic Microcystis aeruginosa PCC7806 was observed with Paucibacter sp. B51 isolated from cyanobacterial bloom samples among 43 tested freshwater bacterial species. Complete genome sequencing, analyzing average nucleotide identity and digital DNA-DNA hybridization, designated the B51 strain as Paucibacter aquatile. Electron and fluorescence microscopic image analyses revealed the presence of the B51 strain in the vicinity of M. aeruginosa cells, which might provoke direct inhibition of the photosynthetic activity of the PCC7806 cells, leading to perturbation of cellular metabolisms and consequent cell death. Our speculation was supported by the findings that growth failure of the PCC7806 cells led to low pH conditions with fewer chlorophylls and down-regulation of photosystem genes (e.g., psbD and psaB) during their 48-h co-culture condition. Interestingly, the concentrated ethyl acetate extracts obtained from B51-grown supernatant exhibited a growth-inhibitory effect on PCC7806. The physical separation of both strains by a filter system led to no inhibitory activity of the B51 cells, suggesting that contact-mediated anti-cyanobacterial compounds might also be responsible for hampering the growth of the PCC7806 cells. Bioinformatic tools identified 12 gene clusters that possibly produce secondary metabolites, including a class II lasso peptide in the B51 genome. Further chemical analysis demonstrated anti-cyanobacterial activity from fractionated samples having a rubrivinodin-like lasso peptide, named paucinodin. Taken together, both contact-mediated inhibition of photosynthesis and the lasso peptide secretion of the B51 strain are responsible for the anti-cyanobacterial activity of P. aquatile B51.


Assuntos
Burkholderiales , Cianobactérias , Microcystis , Microcystis/genética , Cianobactérias/genética , Peptídeos/farmacologia , DNA/farmacologia
6.
J Microbiol Biotechnol ; 33(12): 1615-1624, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-37811910

RESUMO

Microcystis blooms threaten ecosystem function and cause substantial economic losses. Microorganism-based methods, mainly using cyanobactericidal bacteria, are considered one of the most ecologically sound methods to control Microcystis blooms. This study focused on gaining genomic insights into Paucibacter aquatile DH15 that exhibited excellent cyanobactericidal effects against Microcystis. Additionally, a pan-genome analysis of the genus Paucibacter was conducted to enhance our understanding of the ecophysiological significance of this genus. Based on phylogenomic analyses, strain DH15 was classified as a member of the species Paucibacter aquatile. The genome analysis supported that strain DH15 can effectively destroy Microcystis, possibly due to the specific genes involved in the flagellar synthesis, cell wall degradation, and the production of cyanobactericidal compounds. The pan-genome analysis revealed the diversity and adaptability of the genus Paucibacter, highlighting its potential to absorb external genetic elements. Paucibacter species were anticipated to play a vital role in the ecosystem by potentially providing essential nutrients, such as vitamins B7, B12, and heme, to auxotrophic microbial groups. Overall, our findings contribute to understanding the molecular mechanisms underlying the action of cyanobactericidal bacteria against Microcystis and shed light on the ecological significance of the genus Paucibacter.


Assuntos
Burkholderiales , Microcystis , Burkholderiales/genética , Ecossistema , Genômica , Eutrofização
7.
Artigo em Inglês | MEDLINE | ID: mdl-37409567

RESUMO

Gram-negative, aerobic, motile by means of two or more polar or subpolar flagella, rod-shaped strain NS12-5T and Gram-negative, facultatively anaerobic, yellow-coloured, rod-shaped strain RP8T were isolated from rice rhizosphere soil and fermented fruits of Liriope platyphylla in the Republic of Korea, respectively. The result of phylogenetic analyses based on 16S rRNA gene sequences showed that strain NS12-5T was most closely related to Ideonella aquatica 4Y11T with 99.79 % sequence similarity. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain NS12-5T and species of the genus Ideonella were 75.6-91.7 % and 20.3-43.9 %, respectively. Growth occurred at 15-40 °C and pH 5-11, and NaCl was not needed for growth. The major fatty acids of strain NS12-5T were summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0, and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content of strain NS12-5T was 69.03 mol%. The result of phylogenetic analyses based on 16S rRNA gene sequences revealed that strain RP8T was most closely related to Spirosoma aureum BT328T with 96.01 % sequence similarity. The ANI and dDDH values between strain RP8T and reference strains of the genus Spirosoma were 72.9-76.4 % and 18.6-20.0 %, respectively. Growth occurred at 15-37 °C and pH 5-11, and NaCl was not needed for growth. The major fatty acids of strain RP8T were summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 1 ω5c and iso-C15 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C contents of strain RP8T were 54.9 mol%. Based on phenotypic, genomic and phylogenetic results, strains NS12-5T and RP8T represent novel species in the genus Ideonella and Spirosoma, respectively, and the names Ideonella oryzae sp. nov. and Spirosoma liriopis sp. nov. are proposed. The type strain of I. oryzae sp. nov. is NS12-5T (=KACC 22691T=TBRC 16346T) and the type strain of S. liriopis is RP8T (=KACC 22688T=TBRC 16345T).


Assuntos
Burkholderiales , Cytophagaceae , Ácidos Graxos/química , Fosfolipídeos/química , Fosfatidiletanolaminas , Frutas , Cardiolipinas , Filogenia , RNA Ribossômico 16S/genética , Solo , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Burkholderiales/genética , Microbiologia do Solo
8.
Int J Biol Macromol ; 243: 125252, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295700

RESUMO

Ideonella sakaiensis is the bacterium that can survive by degrading polyethylene terephthalate (PET) plastic, and terephthalic acid (TPA) binding protein (IsTBP) is an essential periplasmic protein for uptake of TPA into the cytosol for complete degradation of PET. Here, we demonstrated that IsTBP has remarkably high specificity for TPA among 33 monophenolic compounds and two 1,6-dicarboxylic acids tested. Structural comparisons with 6-carboxylic acid binding protein (RpAdpC) and TBP from Comamonas sp. E6 (CsTphC) revealed the key structural features that contribute to high TPA specificity and affinity of IsTBP. We also elucidated the molecular mechanism underlying the conformational change upon TPA binding. In addition, we developed the IsTBP variant with enhanced TPA sensitivity, which can be expanded for the use of TBP as a biosensor for PET degradation.


Assuntos
Burkholderiales , Comamonas , Ácidos Ftálicos , Ácidos Ftálicos/química , Hidrolases/química
9.
Arch Microbiol ; 205(6): 234, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37178378

RESUMO

Candidatus Branchiomonas cysticola is recognized as the most prevalent bacterial agent causing epitheliocystis in Atlantic salmon (Salmo salar). Based on its partial 16S rRNA sequence, the bacterium has previously been found to be a member of Burkholderiales in the class Betaproteobacteria. Multilocus Sequence Analysis (MLSA) of the bacterium and 60 type strains of Betaproteobacteria using newly identified housekeeping genes (dnaK, rpoC, and fusA) and ribosomal subunit sequences (16S and 23S), instead supported the bacterium's affiliation to Nitrosomodales. Taxonomic rank normalization by Relative Evolutionary Divergence (RED) showed the phylogenetic distinction between Cand. B. cysticola and its closest related type strain to be at the family level. A novel bacterial family named Branchiomonaceae has thus been proposed to include a monophyletic clade of Betaproteobacteria exclusively associated with epitheliocystis in fish.


Assuntos
Infecções Bacterianas , Betaproteobacteria , Burkholderiales , Chlamydiales , Doenças dos Peixes , Salmo salar , Animais , Betaproteobacteria/genética , Filogenia , RNA Ribossômico 16S/genética , Doenças dos Peixes/microbiologia , Chlamydiales/genética , Infecções Bacterianas/microbiologia , Burkholderiales/genética , Análise de Sequência de DNA , DNA Bacteriano/genética
10.
Molecules ; 28(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110762

RESUMO

Polyethylene terephthalate (PET) is one of the most prevalent transparent thermoplastics. It is commonly utilized due to its low cost and high durability. With the massive accumulation of waste PET, however, serious environmental pollution has become a global problem. Compared to traditional chemical degradation, biodegradation of PET catalyzed by PET hydrolase (PETase) is more environmentally friendly and energy-efficient. BbPETaseCD from the Burkholderiales bacterium is a PETase that shows favorable properties for application in the biodegradation of PET. To enhance the enzymatic performance of this enzyme, this work focuses on the rational design of disulfide bridges in BbPETaseCD. We utilized two computational algorithms to predict the probable disulfide-bridge mutations in BbPETaseCD, and five variants were acquired from the computations. Among these, the N364C/D418C variant with one additional disulfide bond showed higher expression than the wild-type enzyme (WT) and the best enzymatic performance. The melting temperature (Tm) of the N364C/D418C variant presented an increase of 14.8 °C over that of WT (56.5 °C), indicating that the additional disulfide bond significantly raised the thermodynamic stability of the enzyme. Kinetic experiments at different temperatures also demonstrated the thermal stability increase of the variant. The variant also showed significantly increased activity over WT when using bis(hydroxyethyl) terephthalate (BHET) as the substrate. More remarkably, the N364C/D418C variant exhibited approximately an 11-fold increase over the WT enzyme in the long-term (14 days) degradation of PET films. The results prove that the rationally designed disulfide bond significantly improved the enzymatic performance of the enzyme for PET degradation.


Assuntos
Burkholderiales , Polietilenotereftalatos , Polietilenotereftalatos/química , Dissulfetos , Hidrolases/química , Domínios Proteicos
11.
Artigo em Inglês | MEDLINE | ID: mdl-36884366

RESUMO

A novel bacterial strain, designated BS-T2-15T, isolated from forest soil in close proximity to decaying oak wood, was characterized using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences as well as phylogenomic analyses based on coding sequences of 340 concatenated core proteins indicated that strain BS-T2-15T forms a distinct and robust lineage in the Rubrivivax-Roseateles -Leptothrix-Azohydromonas -Aquincola-Ideonella branch of the order Burkholderiales. The amino acid identity and the percentage of conserved proteins between the genome of strain BS-T2-15T and genomes of closely related type strains ranged from 64.27 to 66.57% and from 40.89 to 49.27 %, respectively, providing genomic evidence that strain BS-T2-15T represents a new genus. Its cells are Gram-stain-negative, aerobic, motile by a polar flagellum, rod-shaped and form incrusted white to ivory colonies. Optimal growth is observed at 20-22 °C, pH 6 and 0% NaCl. The predominant fatty acids of strain BS-T2-15T are C16 : 1 ω7c, C16 : 0 and C14 : 0 2-OH. Its polar lipid profile consists of a mixture of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol and its main respiratory quinone is ubiquinone 8. The estimated size of its genome is 6.28 Mb with a DNA G+C content of 69.56 mol%. Therefore, on the basis of phenotypic and genotypic properties, the new strain BS-T2-15T represents a novel genus and species for which the name Scleromatobacter humisilvae gen. nov., sp. nov., is proposed. The type strain is BS-T2-15T (DSM 113115T=UBOCC-M-3373T).


Assuntos
Burkholderiales , Quercus , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Ubiquinona/química , Florestas
12.
J Proteomics ; 279: 104888, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965770

RESUMO

Synthetic plastics, like polyethylene terephthalate (PET), have become an essential part of modern life. Many of these products are remarkably persistent in the environment, and the accumulation in the environment is recognised as a major threat. Therefore, an increasing interest has been focusing on the screening for organisms able to degrade and assimilate the plastic. Ideonella sakaiensis originally isolated from a plastisphere has been reported as a bacterium that was solely thriving on the degradation on PET films. The processes affected by the presence of PET and its monomeric substances terephthalic acid, ethylene glycol, ethyl glycolate, and sodium glyoxylate monohydrate were elucidated by analysis of differential protein expression. The exposure of PET and its monomers induced the MHETase and affect two major pathways: the TCA cycle and the ß-oxidation pathway. The increased expression of proteins directly or indirectly involved in these pathways suggests their underlying importance in the degradation of PET by I. sakaiensis since these proteins are mechanistically supporting the enzymes involved in the degradation of PET and its monomers.


Assuntos
Burkholderiales , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Proteômica , Burkholderiales/metabolismo , Hidrolases/metabolismo
13.
Microbes Environ ; 38(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-36878600

RESUMO

Roseateles depolymerans is an obligately aerobic bacterium that produces a photosynthetic apparatus only under the scarcity of carbon substrates. We herein examined changes in the transcriptomes of R. depolymerans cells to clarify the expression of photosynthesis genes and their upstream regulatory factors under carbon starvation. Transcriptomes 0, 1, and 6| |h after the depletion of a carbon substrate indicated that transcripts showing the greatest variations (a 500-fold increase [6 h/0 h]) were light-harvesting proteins (PufA and PufB). Moreover, loci with more than 50-fold increases (6 h/0| |h) were fully related to the photosynthetic gene cluster. Among 13 sigma factor genes, the transcripts of a sigma 70 family sigma factor related to RpoH (SP70) increased along photosynthesis genes under starvation; therefore, a knockout experiment of SP70 was performed. ΔSP70 mutants were found to lack photosynthetic pigments (carotenoids and bacteriochlo-rophyll a) regardless of carbon starvation. We also examined the effects of heat stress on ΔSP70 mutants, and found that SP70 was also related to heat stress tolerance, similar to other RpoH sigma factors (while heat stress did not trigger photosystem production). The deficient accumulation of photosynthetic pigments and the heat stress tolerance of ΔSP70 mutants were both complemented by the introduction of an intact SP70 gene. Furthermore, the transcription of photosynthetic gene operons (puf, puh, and bch) was markedly reduced in the ΔSP70 mutant. The RpoH homologue SP70 was concluded to be a sigma factor that is essential for the transcription of photosynthetic gene operons in R. depolymerans.


Assuntos
Burkholderiales , Fator sigma , Fator sigma/genética , Transcriptoma , Carbono
14.
BMC Microbiol ; 23(1): 20, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658495

RESUMO

BACKGROUND: The floc is a characteristic of microbial aggregate growth, displaying cloudy suspensions in water. Floc formation has been demonstrated in a series of bacteria and the floc-forming bacteria play a crucial role in activated sludge (AS) process widely used for municipal sewage and industrial wastewater treatment over a century. It has been demonstrated that some exopolysaccharide biosynthesis genes and the sigma factor (sigma54 or rpoN) were required for floc forming in some bacteria. However, the mechanism underlying the floc formation stills need to be elucidated. RESULTS: In this study, we demonstrate that a TPR (Tetratricopeptide repeats) protein-encoding gene prsT is required for floc formation of Aquincola tertiaricarbonis RN12 and an upstream PEP-CTERM gene (designated pepA), regulated by RpoN1, is involved in its floc formation but not swarming motility and biofilm formation. Overexpression of PepA could rescue the floc-forming phenotype of the rpoN1 mutant by decreasing the released soluble exopolysaccharides and increasing the bound polymers. CONCLUSION: Our results indicate that the wide-spread PEP-CTERM proteins play an important role in the self-flocculation of bacterial cells and may be a component of extracellular polymeric substances required for floc-formation.


Assuntos
Burkholderiales , Esgotos , Esgotos/microbiologia , Bactérias/genética , Proteínas , Floculação
15.
Commun Biol ; 6(1): 39, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639437

RESUMO

The large-scale preparation of Polyehylene terephthalate (PET) hydrolysing enzymes in low-cost is critical for the biodegradation of PET in industry. In the present study, we demonstrate that the post-translational glycosylation of Pichia pastoris makes it a remarkable host for the heterologous expression of PETase from Ideonella sakaiensis 201-F6 (IsPETase). Taking advantage of the abundant N- and O-linked glycosylation sites in IsPETase and the efficient post-translational modification in endoplasmic reticulum, IsPETase is heavily glycosylated during secretory expression with P. pastoris, which improves the specific activity and thermostability of the enzyme dramatically. Moreover, the specific activity of IsPETase increased further after the bulky N-linked polysaccharide chains were eliminated by Endo-ß-N-acetylglucosaminidase H (Endo H). Importantly, the partially deglycosylated IsPETase still maintained high thermostability because of the remaining mono- and oligo-saccharide residues on the protein molecules. Consequently, the partially deglycosylated IsPETase was able to be applied at 50 °C and depolymerized raw, untreated PET flakes completely in 2 to 3 days. This platform was also applied for the preparation of a famous variant of IsPETase, Fast-PETase, and the same result was achieved. Partially deglycosylated Fast-PETase demonstrates elevated efficiency in degrading postconsumer-PET trays under 55 °C than 50 °C, the reported optimal temperature of Fast-PETase. The present study provides a strategy to modulate thermostable IsPETase through glycosylation engineering and paves the way for promoting PET biodegradation from laboratories to factories.


Assuntos
Burkholderiales , Hidrolases , Hidrolases/química , Burkholderiales/metabolismo , Processamento de Proteína Pós-Traducional , Polissacarídeos
16.
Biochemistry ; 62(2): 437-450, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35951410

RESUMO

The improved production, recycling, and removal of plastic waste, such as polyethylene terephthalate (PET), are pressing environmental and economic issues for society. Biocatalytic (enzymatic) PET depolymerization is potentially a sustainable, low-energy solution to PET recycling, especially when compared with current disposal methods such as landfills, incineration, or gasification. IsPETase has been extensively studied for its use in PET depolymerization; however, its evolution from cutinases is not fully understood, and most engineering studies have neglected the majority of the available sequence space remote from the active site. In this study, ancestral protein reconstruction (ASR) has been used to trace the evolutionary trajectory from ancient serine hydrolases to IsPETase, while ASR and the related design approach, protein repair one-stop shop, were used to identify enzyme variants with improved activity and stability. Kinetic and structural characterization of these variants reveals new insights into the evolution of PETase activity and the role of second-shell mutations around the active site. Among the designed and reconstructed variants, we identified several with melting points 20 °C higher than that of IsPETase and two variants with significantly higher catalytic activity.


Assuntos
Burkholderiales , Hidrolases , Hidrolases/química , Burkholderiales/genética , Burkholderiales/metabolismo , Domínio Catalítico , Mutação , Polietilenotereftalatos/metabolismo
17.
Arch Microbiol ; 204(12): 711, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385587

RESUMO

The accumulation of macro-, micro- and nano-plastic wastes in the environment is a major global concern, as these materials are resilient to degradation processes. However, microorganisms have evolved their own biological means to metabolize these petroleum-derived polymers, e.g., Ideonella sakaiensis has recently been found to be capable of utilizing polyethylene terephthalate (PET) as its sole carbon source. This study aims to prove its potential capacity to biodegrade two commercial PET materials, obtained from food packaging containers. Plastic pieces of different crystallinity were simultaneously introduced to Ideonella sakaiensis during a seven-week lasting investigation. Loss in weight, appearance of plastics, as well as growth of Ideonella sakaiensis-through quantitative real-time PCR-were determined. Both plastics were found enzymatically attacked in a two-stage degradation process, reaching biodegradation capacities of up to 96%. Interestingly, the transparent, high crystallinity PET was almost fully degraded first, followed by the colored low-crystallinity PET. Results of quantitative real-time PCR-based gene copy numbers were found in line with experimental results, thus underlining its potential of this method to be applied in future studies with Ideonella sakaiensis.


Assuntos
Burkholderiales , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Embalagem de Alimentos , Burkholderiales/genética , Burkholderiales/metabolismo , Biodegradação Ambiental
18.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36268863

RESUMO

The three novel bacterial strains designated as 3Y2T, 4Y16 and 4Y11T were isolated from an aquaculture farm and characterized using a polyphasic taxonomic approach. These strains were determined to be catalase- and oxidase-positive and to hydrolyze gelatin and aesculin. The results of 16S rRNA gene-based phylogenetic analysis indicated that the three strains were related to members of the genus Ideonella. The phylogenomic results further indicated that the three strains formed two independent branches distinct from reference type strains within this genus. The digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI) and average amino acid identity (AAI) values between the three strains and their relatives were far below the thresholds of 70 % dDDH, 95-96 % ANI and 95 % AAI for species definition, respectively, indicating that the three strains represent two novel genospecies. The results of chemotaxonomic characterization indicated that the major cellular fatty acids of the three strains were summed feature 3 (C16 : 1ω6c and/or C16 : 1 ω7c) and C16 : 0; the common main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol; the respiratory quinone was ubiquinone-8. The genomic DNA G+C contents of the three strains were 70.2, 70.1 and 69.7%, respectively. On the basis of the different genotypes and distinctive phenotypes such as the phosphatidylcholine and glycolipid only in 3Y2T and the utilization of malic acid and trisodium citrate only in 4Y11T, strains 3Y2T and 4Y11T are concluded to represent two novel species of the genus Ideonella, for which the names Ideonella alba sp. nov. (type strain 3Y2T = GDMCC 1.2584T = KCTC 82813T) and Ideonella aquatica sp. nov. (type strain 4Y11T = GDMCC 1.1935T = JCM 34285T) are proposed.


Assuntos
Burkholderiales , Ubiquinona , RNA Ribossômico 16S/genética , Filogenia , Composição de Bases , Ubiquinona/química , Fosfatidiletanolaminas , Catalase/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Cardiolipinas , Gelatina/genética , Esculina , Ácidos Graxos/química , Análise de Sequência de DNA , Fosfolipídeos/química , Burkholderiales/genética , Aquicultura , Fosfatidilcolinas , Nucleotídeos , Aminoácidos , Glicolipídeos
19.
Environ Pollut ; 311: 119849, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952989

RESUMO

Microcystis blooms pose a major threat to the quality of drinking water. Cyanobactericidal bacteria have attracted much attention in the research community as a vehicle for controlling Microcystis blooms because of their ecological safety. Nonetheless, most studies on cyanobactericidal bacteria have been conducted on a laboratory scale but have not been scaled-up as field experiments. Thus, our understanding of the microbial response to cyanobactericidal bacteria in natural ecosystems remains elusive. Herein, we applied Paucibacter aquatile DH15 to control Microcystis blooms in a 1000 L mesocosm experiment and demonstrated its potential with the following results: (1) DH15 reduced Microcystis cell density by 90.7% within two days; (2) microcystins released by Microcystis death decreased to the control level in four days; (3) during the cyanobactericidal processes, the physicochemical parameters of water quality remained safe for other aquatic organisms; and (4) the cyanobactericidal processes promoted the growth of eukaryotic microalgae, replacing cyanobacteria. The cyanobactericidal processes accelerated turnover rates, decreased stability, and altered the functional profile of the microbial community. Network analysis demonstrated that this process resulted in more complex interactions between microbes. Overall, our findings suggest that strain DH15 could be considered a promising candidate for controlling Microcystis blooms in an eco-friendly manner.


Assuntos
Burkholderiales , Cianobactérias , Microbiota , Microcystis , Microcistinas/metabolismo , Microcystis/metabolismo
20.
Arch Microbiol ; 204(7): 365, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35661924

RESUMO

Candidatus Branchiomonas cysticola is an intracellular, gram-negative Betaproteobacteria causing epitheliocystis in Atlantic Salmon (Salmo salar L.). The bacterium has not been genetically characterized at the intraspecific level despite its high prevalence among salmon suffering from gill disease in Norwegian aquaculture. DNA from gill samples of Atlantic salmon PCR positive for Cand. B. cysticola and displaying pathological signs of gill disease, was, therefore, extracted and subject to next-generation sequencing (mNGS). Partial sequences of four housekeeping (HK) genes (aceE, lepA, rplB, rpoC) were ultimately identified from the sequenced material. Assays for real-time RT-PCR and fluorescence in-situ hybridization, targeting the newly acquired genes, were simultaneously applied with existing assays targeting the previously characterized 16S rRNA gene. Agreement in both expression and specificity between these putative HK genes and the 16S gene was observed in all instances, indicating that the partial sequences of these HK genes originate from Cand. B. cysticola. The knowledge generated from the present study constitutes a major prerequisite for the future design of novel genotyping schemes for this bacterium.


Assuntos
Infecções Bacterianas , Burkholderiales , Doenças dos Peixes , Salmo salar , Animais , Infecções Bacterianas/microbiologia , Burkholderiales/genética , Doenças dos Peixes/microbiologia , Genes Essenciais , Brânquias/microbiologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...